4,114 research outputs found

    Estimation of land production and its response to cultivated land conversion in North China Plain

    Get PDF
    Major State Basic Research Development Program of China 2010CB950904;National Natural Science Foundation of China 70503025 40801231;Chinese Academy of Sciences KZCX2-YW-305-2Food safety and its related influencing factors in China are the hot research topics currently, and cultivated land conversion is one of the significant factors influencing food safety in China. Taking the North China Plain as the study area, this paper examines the changes of cultivated land area using satellite images, estimates land productivity from 1985 to 2005 using the model of Estimation System for Land Productivity (ESLP), and analyzes the impact of cultivated land conversion on the land production. Compared with the grain yield data from statistical yearbooks, the results indicate that ESLP model is an effective tool for estimating land productivity. Land productivity in the North China Plain showed a slight decreasing trend from 1985 to 2005, spatially, increased from the north to the south gradually, and the net changes varied in different areas. Cultivated land area recorded a marginal decrease of 8.0 x 10(5) ha, mainly converted to other land uses. Cultivated land conversion had more significant negative impacts on land production than land productivity did. Land production decreased by about 6.48 x 10(6) t caused by cultivated land conversion between 1985 and 2005, accounting for 91.9% of the total land production reduction. Although the land productivity increased in Anhui and Jiangsu provinces, it can not offset the overall adverse effects caused by cultivated land conversion. Therefore, there are significant meanings to control the cultivated land conversion and improve the land productivity for ensuring the land production in the North China Plain

    Effect Threshold for Selenium Toxicity in Juvenile Splittail, Pogonichthys macrolepidotus A

    Get PDF
    In fish, selenium can bioaccumulate and cause adverse impacts. One of the fish species potentially at risk from selenium in the San Francisco Bay (California, USA) is the splittail (Pogonichthys macrolepidotus). Previous studies have derived a whole body NOAEL and LOAEL of 9.0 and 12.9 mg/kg-dw, respectively, for selenium in juveniles. However, the NOAEL/LOAEL approach leaves some uncertainty regarding the threshold of toxicity. Therefore, the raw data from the original experiment was re-analyzed using a logistic regression to derive EC10 values of 0.9 mg/kg-dw in feed, 7.9 mg/kg-dw in muscle, 18.6 mg/kg-dw in liver for juvenile splittail. Selenium concentrations in the dietary items of wild splittail exceed the EC10 values derived here. Thus, deformities previously reported in wild splittail may have resulted from selenium exposures via the food chain

    Antioxidant and Antihypertensive Activity Egg White Powder Produced by Pan Drying at Different Temperature and Drying Time

    Get PDF
    Antioxidant and antihypertensive (ACE-Inhibitors) are commonly known as bioactive molecules in foodstuff. Both molecules can be obtained naturally or through processing and preservation of egg white of poultry eggs. One way of preserving the egg white with drying method is by pan drying method. The objective of this study was to determine an appropriate temperature and drying time to produce high yield of antioxidant and antihypertensive activity. The materials used for this study were 900 eggs which were obtained from the same farm. That amount was calculated based on the number of experimental units required to run the experiment with the total number of treatment (3 x 3) with 4 replications for each treatment combination giving 25 chicken eggs for each treatment. The experiment was carried out using a 3x3 factorial arrangement according to completely randomized design. The first factor was drying temperature, i.e. 45oC, 50oC, and 55oC and the second factor was drying time, i.e. 30h, 39h, and 48h. The results showed that high antioxidant activity was found on egg white which was dried at temperature of 45oC for 39 hours which reached 26.85%. However, antihypertensive activity was optimum at 50oC and drying for 48 hours, which was up to 75.06%. Drying the egg white using appropriate temperature and time may improve the antioxidant and antihypertensive activities

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana

    Get PDF
    The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress

    Supernova 2007bi as a pair-instability explosion

    Get PDF
    Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse progressively heavier elements in their centres, up to inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion -- an iron-core-collapse supernova (SN). In contrast, extremely massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs prior to oxygen ignition, and leads to a violent contraction that triggers a catastrophic nuclear explosion. Tremendous energies (>~ 10^{52} erg) are released, completely unbinding the star in a pair-instability SN (PISN), with no compact remnant. Transitional objects with 100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse supernovae following violent mass ejections, perhaps due to short instances of the pair instability, may have been identified. However, genuine PISNe, perhaps common in the early Universe, have not been observed to date. Here, we present our discovery of SN 2007bi, a luminous, slowly evolving supernova located within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding core mass to be likely ~100 M_{solar}, in which case theory unambiguously predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were synthesized, and that our observations are well fit by PISN models. A PISN explosion in the local Universe indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic limit, perhaps resulting from star formation processes similar to those that created the first stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009), including all supplementary informatio

    Assimilating Seizure Dynamics

    Get PDF
    Observability of a dynamical system requires an understanding of its state—the collective values of its variables. However, existing techniques are too limited to measure all but a small fraction of the physical variables and parameters of neuronal networks. We constructed models of the biophysical properties of neuronal membrane, synaptic, and microenvironment dynamics, and incorporated them into a model-based predictor-controller framework from modern control theory. We demonstrate that it is now possible to meaningfully estimate the dynamics of small neuronal networks using as few as a single measured variable. Specifically, we assimilate noisy membrane potential measurements from individual hippocampal neurons to reconstruct the dynamics of networks of these cells, their extracellular microenvironment, and the activities of different neuronal types during seizures. We use reconstruction to account for unmeasured parts of the neuronal system, relating micro-domain metabolic processes to cellular excitability, and validate the reconstruction of cellular dynamical interactions against actual measurements. Data assimilation, the fusing of measurement with computational models, has significant potential to improve the way we observe and understand brain dynamics

    Systemic Risk and Default Clustering for Large Financial Systems

    Full text link
    As it is known in the finance risk and macroeconomics literature, risk-sharing in large portfolios may increase the probability of creation of default clusters and of systemic risk. We review recent developments on mathematical and computational tools for the quantification of such phenomena. Limiting analysis such as law of large numbers and central limit theorems allow to approximate the distribution in large systems and study quantities such as the loss distribution in large portfolios. Large deviations analysis allow us to study the tail of the loss distribution and to identify pathways to default clustering. Sensitivity analysis allows to understand the most likely ways in which different effects, such as contagion and systematic risks, combine to lead to large default rates. Such results could give useful insights into how to optimally safeguard against such events.Comment: in Large Deviations and Asymptotic Methods in Finance, (Editors: P. Friz, J. Gatheral, A. Gulisashvili, A. Jacqier, J. Teichmann) , Springer Proceedings in Mathematics and Statistics, Vol. 110 2015
    corecore